Dwelling in the deep – strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil
نویسندگان
چکیده
منابع مشابه
Soil CO2 production in upland tundra where permafrost is thawing
[1] Permafrost soils store nearly half of global soil carbon (C), and therefore permafrost thawing could lead to large amounts of greenhouse gas emissions via decomposition of soil organic matter. When ice-rich permafrost thaws, it creates a localized surface subsidence called thermokarst terrain, which changes the soil microenvironment. We used soil profile CO2 measurements to understand the r...
متن کاملHydrologic regulation of plant rooting depth.
Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observ...
متن کاملA Frozen Feast: Thawing permafrost increases plant-available nitrogen in subarctic peatlands
Many of the world's northern peatlands are underlain by rapidly thawing permafrost. Because plant production in these peatlands is often nitrogen (N)-limited, a release of N stored in permafrost may stimulate net primary production or change species composition if it is plant-available. In this study, we aimed to quantify plant-available N in thawing permafrost soils of subarctic peatlands. We ...
متن کاملForaging the Thaw Front: Increased nutrient uptake at the permafrost surface enhances biomass production of deep- rooting subarctic peatland species
1. Plant production in subarctic peatlands is nitrogen (N)-limited. Climate warming increases N mineralization in superficial peat layers and recent results additionally show that permafrost thawing in these peatlands may substantially increase plant-available N at the thaw front. This might stimulate net primary production and affect species composition. However, the ability of individual peat...
متن کاملIncreased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost
1. The response of northern tundra plant communities to warming temperatures is of critical concern because permafrost ecosystems play a key role in global carbon (C) storage, and climateinduced ecological shifts in the plant community will affect the transfer of carbon-dioxide between biological and atmospheric pools. 2. This study, which focuses on the response of tundra plant growth and phen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Phytologist
سال: 2019
ISSN: 0028-646X,1469-8137
DOI: 10.1111/nph.15903